The chemical species of aluminum influences its paracellular flux across and uptake into Caco-2 cells, a model of gastrointestinal absorption.
نویسندگان
چکیده
Aluminum (Al) can cause neurotoxicity, a low-turnover osteomalacia, and microcytic anemia. To test the null hypothesis that the chemical form (species) of Al does not influence its mechanism or rate of absorption from the gastrointestinal tract, Al flux across and uptake into Caco-2 cells was investigated. Caco-2 cells were grown on porous membranes mounted in vertical diffusion chambers or in 35-mm-diameter plastic cell culture dishes. When 8 mM 27Al was introduced as the ion, citrate, maltolate, fluoride, or hydroxide, the apical to basolateral apparent permeability (Papp) of Al correlated highly with the Papp of lucifer yellow (LY), a paracellular marker, except when introduced as Al hydroxide. The uptake rate of Al when introduced as the fluoride was > when introduced as the ion > maltolate > citrate > hydroxide. The activation energy of Al introduced as the ion, citrate, maltolate, and fluoride, determined from Arrhenius plots, was 13-22 KJ/mol, suggesting diffusion-mediated uptake. With exposure to 2 microM Al (containing 26Al as a tracer) introduced as the ion, hydroxide, citrate, and fluoride, Al and LY Papp were consistent with results obtained with 8 mM Al, but were not Al species dependent. Approximately 0.015% of the 26Al fluxed across the cell monolayer; 0.75% was associated with cells. Lumogallion staining imaged by confocal laser microscopy showed Al co-localized with DAPI in the nucleus. The results suggest that (1) soluble Al species predominantly diffuse through the paracellular pathway, (2) the ligand-dependent flux rate of Al is due to an effect on the tight junctions, (3) Caco-2 cell uptake of Al is a diffusion process, and (4) the ligand can influence the rate of cellular Al uptake.
منابع مشابه
In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model
The uptake and transport of 9-nitrocamptothecin (9-NC), a potent anticancer agent, across Caco-2 cell monolayers was studied as a free and PLGA nanoparticle loaded drug. Different sizes (110 to 950 nm) of 9-nitrocamptothecin nanoparticles using poly (lactic-glycolic acid) were prepared by via the nanoprecipitation method. The transport of nanoparticles across the Caco-2 cell monolayer as a func...
متن کاملIn vitro investigation of intestinal transport mechanism of silicon, supplied as orthosilicic acid-vanillin complex.
SCOPE Silicon (Si) is one of the most abundant trace elements in the body. Although pharmacokinetics data described its absorption from the diet and its body excretion, the mechanisms involved in the uptake and transport of Si across the gut wall have not been established. METHODS AND RESULTS Caco-2 cells were used as a well-accepted in vitro model of the human intestinal epithelium to invest...
متن کاملUptake and fate of ganglioside GD3 in human intestinal Caco-2 cells.
Ganglioside GD3 is a glycosphingolipid found in colostrum, developing tissues, and tumors and is known to regulate cell growth, differentiation, apoptosis, and inflammation. Feeding a GD3-enriched diet to rats increases GD3 in intestinal lipid rafts and blood. The mechanism, efficiency, and fate of ganglioside absorption by human enterocytes have not been investigated. A model to study GD3 upta...
متن کاملAn Investigation into the Role of P-Glycoprotein in the Intestinal Absorption of Repaglinide: Assessed by Everted Gut Sac and Caco-2 Cell Line
The present study aimed at exploring the potential of the P-glycoprotein (P-gp) transporters as a barrier to the repaglinide (REG) epithelial permeability. In-vitro intestinal absorption models, the everted gut sac, and Caco-2 cell line, were used to study the possible role of P-gp in intestinal transport of REG. In the everted gut sacs, apparent permeability coefficients showed cargo concentra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2005